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Abstract
An analytic proof of the necessity of the Borland–Dennis conditions for 3-
representability of a one-particle density matrix with rank 6 is given. This may
shed some light on Klyachko’s recent use of Schubert calculus to find general
conditions for N-representability.

PACS number: 02.10.Yn

1. Introduction

The recent announcement by Klyachko [8] of the solution of the pure state N-representability
problem [3] for fermionic one-particle density matrix observes that this is the first new result
since the work of Borland and Dennis [2] in the early 1970s. There may therefore be
some historical value in unpublished work of the author from that time, which makes a
connection between the Borland–Dennis conditions and Weyl’s problem [11]. The latter asks
for conditions on sequences {ak}, {bk}, {ck} which ensure that there exist self-adjoint matrices
A,B,C with eigenvalues ak, bk, ck , respectively, such that A + B = C. The first complete
solution to Weyl’s problem was given by Klyachko [7] in 1998.

Let γ be a density matrix normalized so that tr γ = N . The pure state N-representability
problem for fermions asks for necessary and sufficient conditions on γ for the existence of an
antisymmetric N-particle state whose one-particle reduced density matrix is γ . Let R denote
the rank of γ . For the case N = 3 and R = 6, Borland and Dennis [2] gave a pair of conditions
on the eigenvalues λk of γ which can be written as follows under the assumption that they are
arranged in non-increasing order:

λ1 + λ6 = 1, λ2 + λ5 = 1, λ3 + λ4 = 1 (1)

λ1 + λ2 � λ3 + 1. (2)

Note that (1) can be written compactly as λk + λ7−k = 1 for k = 1, 2, 3.
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Borland and Dennis [2] proposed their conditions on the basis of numerical studies and
gave a proof of (2) under an assumption, which is equivalent to (1), about the pre-image of γ .
In this communication, we show that (1) is a necessary condition for N-representability when
N = 3 and R = 6, completing the analytic proof of Borland and Dennis. We begin with some
background material in section 2. In section 3, we present a proof of the necessity of (1).
In section 4 we give a different, independent proof of the necessity of the inequality (2)
from Weyl’s inequalities. For completeness, we include a proof of sufficiency of (1) and (2)
in section 5. In sections 6 and 7, we present some partial results for the cases N = 3 and
R = N + 3 in the hope of providing some intuition behind the success of Klyachko’s approach
to a full solution.

2. Notation and background

In this communication, we write the eigenvectors of γ as |φk〉 so that

γ =
∑

k

λk|φk〉〈φk|. (3)

We will let A denote the anti-symmetrization operator and use the notation [fj , fk, f�] =
Afj (x1)fk(x2)f�(x3) to denote a Slater determinant. The notation 〈, 〉m indicates a partial
inner product on a tensor product of Hilbert spaces.

We need some results from section 10 of Coleman’s fundamental paper [3]. The first is
theorem 10.6 in [3].

Lemma 1 (Coleman). The one-particle density matrix γ is N-representable with pre-image
|�〉 = √

λ1A|φ1〉 ⊗ |�1〉 +
√

1 − λ1|�2〉 if and only if it can be written in the form

γ = λ1|φ1〉〈φ1| + λ1γ1 + (1 − λ1)γ2 (4)

where γ1 is the (N−1)-representable reduced density matrix of |�1〉 and γ2 is N-representable
with pre-image �2 satisfying

〈φ1,�2〉1 = 〈�1,�2〉2,3,...,N = 0. (5)

The next two results are theorems 10.2 and 10.4, respectively, in [3]. (See also [10].)

Theorem 2. A one-particle density matrix γ is 2-representable if and only if all non-zero
eigenvalues are doubly degenerate. If there are no other degeneracies and the eigenvalues are
written in non-increasing order so that λ2k−1 = λ2k > λ2k+1, then the pre-image of γ must
have the form

|�〉 =
∑

k

eiθk

√
λ2k[φ2k−1, φ2k]. (6)

Theorem 3. When N = 2n + 1 is odd and the one-particle density matrix γ has rank
R = N + 2, it is N-representable if and only if λ1 = 1 and the remaining eigenvalues are
doubly degenerate.

3. Necessity of the condition λk + λ7−k = 1

To show that (1) is a necessary condition for 3-representability when R = 6, observe that
since λ1 = 〈φ1, γ φ1〉 it follows from (4) that

〈φ1, γ1φ1〉 = 〈φ1, γ2φ1〉 = 0.
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Therefore, γ1 and γ2 have rank �5. It then follows from theorem 3 that one can write

γ2 = |g1〉〈g1| + |a|2|g2〉〈g2| + |a|2|g3〉〈g3| + |b|2|g4〉〈g4| + |b|2|g5〉〈g5|
with |a|2 + |b|2 = 1 and |�2〉 = a[g1, g2, g3] + b[g1, g4, g5]. There is no loss of generality in
writing �1 = ∑

j<k cjk[gj , gk].
We first consider the case in which both a, b �= 0. Then a simple computation shows

that (5) implies

|�1〉 = c24[g2, g4] + c25[g2, g5] + c34[g3, g4] + c35[g3, g5]

so that 〈g1,�1〉1 = 0. Defining |φ6〉 = |g1〉, gives λ6 = 1 − λ1 and one can rewrite (4) as

γ = λ1|φ1〉〈φ1| + (1 − λ1)|φ6〉〈φ6| + λ1γ1 + (1 − λ1)γ̃2 (7)

where γ̃2 = γ2 − |g1〉〈g1| is the reduced density matrix of |G1〉 = 〈g1,�2〉3 = a[g2, g3] +
b[g4, g5]. Thus, in the orthonormal basis {g2, g3, g4, g5} we find

γ1 =

⎛⎜⎜⎜⎜⎝
|c24|2 + |c25|2 c24c34 + c25c35 0 0

c24c34 + c25c35 |c34|2 + |c35|2 0 0

0 0 |c24|2 + |c34|2 c24c25 + c34c35

0 0 c24c25 + c34c35 |c25|2 + |c35|2

⎞⎟⎟⎟⎟⎠ .

The key point is that γ1 is block diagonal and can be diagonalized by a block diagonal unitary
transformation which mixes only within pairs g2, g3 and g4, g5 leaving the Slater determinants
in G1 unaffected (except possibly for a phase factor which can be absorbed into the new
basis). Denoting the new basis as φk , we now have |G1〉 = a[φ2, φ3] + b[φ4, φ5]. Then
either by explicit computation or from Coleman’s proof [4] of theorem 2, one can write
|�1〉 = s[φ2, φ4] + t[φ3, φ5] with |s|2 + |t |2 = 1. Thus, the eigenvalues of γ satisfy

λ2 = λ1|a|2 + (1 − λ1)|s|2 (8a)

λ3 = λ1|b|2 + (1 − λ1)|s|2 (8b)

λ4 = λ1|a|2 + (1 − λ1)|t |2 (8c)

λ5 = λ1|b|2 + (1 − λ1)|t |2 (8d)

which implies

λ2 + λ5 = λ3 + λ4 = λ1 + (1 − λ1) = 1. (9)

We now consider the possibility that one of a, b is zero, in which case |�2〉 is a single
Slater determinant and there is no loss of generality in writing �2 = [g1, g2, g3]. Then, (5)
implies that one can write

|�1〉 =
∑

j=1,2,3

∑
k=4,5

xjk[gj , gk] + c[g4, g5]. (10)

Now regard xjk as a 3 × 2 matrix and observe when U,V are 3 × 3 and 2 × 2 unitary
matrices, Y = UXV † corresponds to a basis change which mixes g1, g2, g3 and g4, g5 among
themselves. By the singular value decomposition we can find U,V such that only y24 and y35

are non-zero. Thus, in the new basis which we call φk

|�1〉 = y24[φ2, φ4] + y35[φ3, φ5] + c[φ4, φ5]. (11)

Again writing φ6 = g1, we find that the pre-image of γ has the form

|�〉 = a123[φ1, φ2, φ3] + a246[φ2, φ4, φ6] + a356[φ3, φ5, φ6] + a456[φ4, φ5, φ6] (12)

which implies (1).
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4. Necessity of the inequality (2)

We now prove that the inequality (2) is necessary for N-representability. When γ has the
form (3) and (1) holds, its pre-image can be written in the form

|�〉=x000[φ1, φ2, φ3] + x001[φ1, φ2, φ4] + x010[φ1, φ5, φ3] + x011[φ1, φ5, φ4]

+ x100[φ6, φ2, φ3] + x101[φ6, φ2, φ4] + x110[φ6, φ5, φ3] + x111[φ6, φ5, φ4]. (13)

In this form, there is no loss of generality in assuming that λk are arranged in non-increasing
order. If we now define

S =
(

x000 x001

x010 x011

)
T =

(
x100 x101

x110 x111

)
(14)

then the reduced density matrix of |�〉 is (up to a permutation) W1 ⊕ W2 ⊕ W3 with

W1 =
(

λ1 0
0 λ6

)
=

(
tr SS† tr ST †

tr T S† tr T T †

)
(15)

W2 =
(

λ2 0
0 λ5

)
= SS† + T T † (16)

W3 =
(

λ3 0
0 λ4

)
= S†S + T †T . (17)

It follows from (15) that the eigenvalues of SS†, which are the same as those of S†S, can be
written as σ, λ1 −σ with 0 � σ � λ1; similarly those of T T † and T †T can be written as
τ, λ6−τ with 0 � τ � λ6.

The form of (16) and (17) is suggestive of Weyl’s problem with A = SS†, B = T T †, C =
W2 in the case of (16) and adjoints reversed for (17). Weyl [6, 11] used the max–min principle
to find necessary conditions

a1 + b1 � c1, a2 + b1 � c2, a1 + b2 � c2 (18)

(with all three sequences in non-increasing order). For 2 × 2 matrices satisfying tr A + tr B =
tr C, these are also sufficient. We apply Weyl’s inequalities to (16) and (17) and retain the
stronger in each pair to obtain

σ + τ � λ2 (19a)

λ1 − σ + τ � λ4 (19b)

σ + λ6 − τ � λ4. (19c)

Adding together the first two inequalities implies

2τ � λ2 + λ4 − λ1. (20)

Combining this with 2λ6 � 2τ and using (1) gives

2(1 − λ1) = 2λ6 � λ2 + 1 − λ3 − λ1 (21)

which is equivalent to (2).
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5. Sufficiency

To prove sufficiency, it suffices to consider a pre-image of the form

� = â[φ1, φ2, φ3] + b̂[φ1, φ4, φ5] + ŝ[φ6, φ2, φ4] + t̂[φ6, φ5, φ3] (22)

and observe that its first-order reduced density matrix is diagonal in the basis φk with

|â|2 + |b̂|2 = λ1 |ŝ|2 + |t̂ |2 = λ6.

Under the assumption that (1) holds, the linear relation between the eigenvalues of γ and
|â|2, |b̂|2, |ŝ|2, |t̂ |2 can be inverted to yield

|â|2 = 1
2 (λ2 + λ3 − λ6) |b̂|2 = 1

2 (λ1 − λ2 + λ4) (23a)

|ŝ|2 = 1
2 (λ2 − λ3 + λ6) |t̂ |2 = 1

2 (λ6 − λ2 + λ3). (23b)

With the ordering convention λk � λk+1, the expressions for |â|2, |b̂|2 and |ŝ|2 are all positive;
and |t̂ |2 � 0 is equivalent to (2).

In section 3, we showed slightly more than that (1) holds. We also showed that the
pre-image can always be written in a form in which only four of the coefficients in (13) are
non-zero. However, neither of these forms is equivalent to (22) with λk decreasing. The
equations for the coefficients in one of those forms might have solutions only when a stronger
inequality than (2) holds. In particular, the form obtained from (7) in the paragraph before (8)
has solutions only when λ1 + λ2 � λ4 + 1.

6. General R = N + 3 with N odd

It is tempting to try to extend the argument in section 3 to the general case of R = N + 3 when
N is odd. Using (4) we can conclude as before that γ2 must be N-representable with R = N +2
and thus has an eigenvector |g1〉 with eigenvalue 1. We can write its pre-image as

|�2〉 = am[g1, g2, g3, . . . , gN−1, gN ] + · · · + ak[g1, g2, g3, . . . , g2k−1g2k+2, . . . , gN−1, gN ]

+ · · · + a1[g1, g4, g4, . . . , gN+1, gN+2] (24)

where m = 1
2 (N + 1) and ak is the coefficient of the Slater determinant which does not contain

g2k or g2k+1. However, it is not evident that the strong orthogonality condition 〈g1,�1〉1 = 0
holds as was the case for N = 3. If we knew that

λ1 + 〈g1, γg1〉 � 1, (25)

strong orthogonality would follow, and we could again conclude that g1 is an eigenvector of
γ with eigenvalue 〈g1, γg1〉 = 1 − λ1. However, we can only show that the assumption of
strong orthogonality implies (25) with equality.

Proposition 4. Let R = N +3 with N odd and consider the decomposition (4) of a one-particle
density matrix γ under the assumption that λ1 is the largest eigenvalue. Then |�2〉 has an
eigenvector |g1〉 with eigenvalue 1. If 〈g1,�1〉1 = 0, then |g1〉 is an eigenvector of γ with
eigenvalue 1 − λ1 and this is the smallest eigenvalue of γ .

Proof. Let |φk〉 denote an eigenvector of γ orthogonal to both |φ1〉 and |g1〉 and write

|�1〉 = aA|φk ⊗ χ1〉 +
√

1 − a2|ψ1〉
|�2〉 = bA|g1 ⊗ φk ⊗ χ2〉 +

√
1 − b2A|g1 ⊗ ψ2〉,
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where we have absorbed any phases into ψj . Then λk = λ1a
2 + (1 − λ1)b

2. Since each
|ψj 〉 is strongly orthogonal to |φ1〉, |g1〉 and |φk〉, each |ψj 〉 is an (N −1)-particle function
with one rank at most N. It is well known [3, 5, 10] that this implies that |ψj 〉 is a single
Slater determinant. Since both |ψ1〉 and |ψ2〉 have one-particle density matrices in the same
N-dimensional subspace, it follows that the ranges of these one-particle density matrices have
a non-zero intersection. Let |f 〉 be in this intersection. Then

〈f, γf 〉 = (1 − a2)λ1 + (1 − b2)(1 − λ1) = 1 − λk. (26)

Thus, if λk < 1 − λ1, then 〈f, γf 〉 > λ1 contradicting the assumption that λ1 is the largest
eigenvalue. �

If the strong orthogonality assumption does not hold then (4) and (24) imply that
λ1 + 〈g1, γg1〉 � 1 which is the reverse of (25) and implies that λ1 + λk � 1, for some
k �= 1. Altunbulak and Klyachko [1] have proved the stronger result that

λ1 + λR � 1 (27)

in this situation. Actually, they proved an equivalent dual condition, i.e., when N = 3 and
R is even λ1 + λR � 1. A condition of the form λj + λj ′ � 1 is sometimes called a ‘strong
Pauli condition’; for N = 3 and R even Altunbulak and Klyachko have shown the strong Pauli
condition λ1+k + λr−k � 1; combining this with the fact that particle–hole duality yields the
reverse inequality, gives another proof of the necessity of (1) in the case N = 3, R = 6. The
following conjecture would imply that both the strong Pauli condition and (27) hold. Although
that might be too much too expect, it would be interesting to know under what circumstances
it is valid.

Conjecture 5. When N is odd and R = N + 3, a necessary condition for pure state N-
representability of a one-particle density matrix is λ1 + λR = 1, where we have assumed that
the eigenvalues are in non-increasing order.

7. Further connections with Weyl’s problem

Now assume that g1 is strongly orthogonal to �1 and, as in (7), write

γ = λ1|φ1〉〈φ1| + (1 − λ1)|g1〉〈g1| + λ1γ1 + (1 − λ1)γ̃2. (28)

The N-representability problem in this situation is reduced to finding conditions which ensure
that a density matrix is a convex combination of two (N −1)-representable density matrices
of rank N + 1 which satisfy an additional orthogonality constraint. Write

|�1〉 =
∑

k1<k2<···kN−1

xk1k2...kN−1 [g1, g2, . . . , gN−1]

|�2〉 =
∑

k1<k2<···kN−1

yk1k2...kN−1 .[g1, g2, . . . , gN−1].

Let X, Y be the corresponding anti-symmetric tensors, and let

XY † =
∑

k2,k3,...,kM

xk1,k2,...,kM
yk1,k2,...,kM

(29)

denote contraction over k2 . . . kM . Then, we can rewrite (7) as

γ − λ1|φ1〉〈φ1| − (1 − λ1)|g1〉〈g1| = XX† + YY † (30)

with the constraint 〈�1,�2〉 = tr XY † = 0. This is a constrained version of Weyl’s problem.
If the R = N + 3 problem could be solved in this way, then by particle–hole duality, we would
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also have the solution to the 3-representability problem. Although we do not know if strongly
orthogonality of g1 to �1 holds in general, this viewpoint provides a connection to Weyl’s
problem that is more general than the situation for which it was used in section 4.

For general R (or for R = N + 3 without the simplification that leads to (7)), Coleman’s
lemma 1 gives a constrained version of Weyl’s problem with γ1 = XX† and γ2 = YY †.
But now γ1 is (N − 1)-representable and γ2 is N-representable and the orthogonality
condition (5) must be translated to tensors of different sizes. Nevertheless, it now seems
clear that what Coleman referred to as a double induction lemma was a constrained version of
Weyl’s problem. The solution to Weyl’s problem was given less than 10 years ago, with more
recent refinements [9]. Thus, it is not surprising that the pure state N-representability problem
also resisted solution and that Klyachko succeeded by using powerful techniques associated
with Schubert calculus to solve both problems.
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