Connecting N-representability to Weyl's problem: the one-particle density matrix for $N=3$ and $R=6$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 40 F961
(http://iopscience.iop.org/1751-8121/40/45/F01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.146
The article was downloaded on 03/06/2010 at 06:24

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

Connecting N-representability to Weyl's problem: the one-particle density matrix for $N=3$ and $R=6^{*}$

Mary Beth Ruskai
Department of Mathematics, Tufts University, Medford, MA 02155, USA
E-mail: Marybeth.Ruskai@tufts.edu

Received 14 August 2007, in final form 7 October 2007
Published 23 October 2007
Online at stacks.iop.org/JPhysA/40/F961

Abstract

An analytic proof of the necessity of the Borland-Dennis conditions for 3representability of a one-particle density matrix with rank 6 is given. This may shed some light on Klyachko's recent use of Schubert calculus to find general conditions for N-representability.

PACS number: 02.10.Yn

1. Introduction

The recent announcement by Klyachko [8] of the solution of the pure state N-representability problem [3] for fermionic one-particle density matrix observes that this is the first new result since the work of Borland and Dennis [2] in the early 1970s. There may therefore be some historical value in unpublished work of the author from that time, which makes a connection between the Borland-Dennis conditions and Weyl's problem [11]. The latter asks for conditions on sequences $\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{c_{k}\right\}$ which ensure that there exist self-adjoint matrices A, B, C with eigenvalues a_{k}, b_{k}, c_{k}, respectively, such that $A+B=C$. The first complete solution to Weyl's problem was given by Klyachko [7] in 1998.

Let γ be a density matrix normalized so that $\operatorname{tr} \gamma=N$. The pure state N-representability problem for fermions asks for necessary and sufficient conditions on γ for the existence of an antisymmetric N-particle state whose one-particle reduced density matrix is γ. Let R denote the rank of γ. For the case $N=3$ and $R=6$, Borland and Dennis [2] gave a pair of conditions on the eigenvalues λ_{k} of γ which can be written as follows under the assumption that they are arranged in non-increasing order:

$$
\begin{array}{ll}
\lambda_{1}+\lambda_{6}=1, & \lambda_{2}+\lambda_{5}=1, \\
\lambda_{1}+\lambda_{2} \leqslant \lambda_{3}+1 . & \lambda_{3}+\lambda_{4}=1 \tag{2}\\
\end{array}
$$

Note that (1) can be written compactly as $\lambda_{k}+\lambda_{7-k}=1$ for $k=1,2,3$.

* Partially supported by the National Science Foundation under Grant DMS-0604900.

Borland and Dennis [2] proposed their conditions on the basis of numerical studies and gave a proof of (2) under an assumption, which is equivalent to (1), about the pre-image of γ. In this communication, we show that (1) is a necessary condition for N-representability when $N=3$ and $R=6$, completing the analytic proof of Borland and Dennis. We begin with some background material in section 2 . In section 3, we present a proof of the necessity of (1). In section 4 we give a different, independent proof of the necessity of the inequality (2) from Weyl's inequalities. For completeness, we include a proof of sufficiency of (1) and (2) in section 5. In sections 6 and 7, we present some partial results for the cases $N=3$ and $R=N+3$ in the hope of providing some intuition behind the success of Klyachko's approach to a full solution.

2. Notation and background

In this communication, we write the eigenvectors of γ as $\left|\phi_{k}\right\rangle$ so that

$$
\begin{equation*}
\gamma=\sum_{k} \lambda_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| . \tag{3}
\end{equation*}
$$

We will let \mathcal{A} denote the anti-symmetrization operator and use the notation $\left[f_{j}, f_{k}, f_{\ell}\right]=$ $\mathcal{A} f_{j}\left(x_{1}\right) f_{k}\left(x_{2}\right) f_{\ell}\left(x_{3}\right)$ to denote a Slater determinant. The notation \langle,\rangle_{m} indicates a partial inner product on a tensor product of Hilbert spaces.

We need some results from section 10 of Coleman's fundamental paper [3]. The first is theorem 10.6 in [3].

Lemma 1 (Coleman). The one-particle density matrix γ is N-representable with pre-image $|\Psi\rangle=\sqrt{\lambda} 1 \mathcal{A}\left|\phi_{1}\right\rangle \otimes\left|\Phi_{1}\right\rangle+\sqrt{1-\lambda_{1}}\left|\Phi_{2}\right\rangle$ if and only if it can be written in the form

$$
\begin{equation*}
\gamma=\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \gamma_{2} \tag{4}
\end{equation*}
$$

where γ_{1} is the $(N-1)$-representable reduced density matrix of $\left|\Phi_{1}\right\rangle$ and γ_{2} is N-representable with pre-image Φ_{2} satisfying

$$
\begin{equation*}
\left\langle\phi_{1}, \Phi_{2}\right\rangle_{1}=\left\langle\Phi_{1}, \Phi_{2}\right\rangle_{2,3, \ldots, N}=0 \tag{5}
\end{equation*}
$$

The next two results are theorems 10.2 and 10.4, respectively, in [3]. (See also [10].)
Theorem 2. A one-particle density matrix γ is 2-representable if and only if all non-zero eigenvalues are doubly degenerate. If there are no other degeneracies and the eigenvalues are written in non-increasing order so that $\lambda_{2 k-1}=\lambda_{2 k}>\lambda_{2 k+1}$, then the pre-image of γ must have the form

$$
\begin{equation*}
|\Psi\rangle=\sum_{k} \mathrm{e}^{\mathrm{i} \theta_{k}} \sqrt{\lambda_{2 k}}\left[\phi_{2 k-1}, \phi_{2 k}\right] . \tag{6}
\end{equation*}
$$

Theorem 3. When $N=2 n+1$ is odd and the one-particle density matrix γ has rank $R=N+2$, it is N-representable if and only if $\lambda_{1}=1$ and the remaining eigenvalues are doubly degenerate.

3. Necessity of the condition $\lambda_{k}+\lambda_{7-k}=1$

To show that (1) is a necessary condition for 3-representability when $R=6$, observe that since $\lambda_{1}=\left\langle\phi_{1}, \gamma \phi_{1}\right\rangle$ it follows from (4) that

$$
\left\langle\phi_{1}, \gamma_{1} \phi_{1}\right\rangle=\left\langle\phi_{1}, \gamma_{2} \phi_{1}\right\rangle=0 .
$$

Therefore, γ_{1} and γ_{2} have rank $\leqslant 5$. It then follows from theorem 3 that one can write

$$
\gamma_{2}=\left|g_{1}\right\rangle\left\langle g_{1}\right|+|a|^{2}\left|g_{2}\right\rangle\left\langle g_{2}\right|+|a|^{2}\left|g_{3}\right\rangle\left\langle g_{3}\right|+|b|^{2}\left|g_{4}\right\rangle\left\langle g_{4}\right|+|b|^{2}\left|g_{5}\right\rangle\left\langle g_{5}\right|
$$

with $|a|^{2}+|b|^{2}=1$ and $\left|\Phi_{2}\right\rangle=a\left[g_{1}, g_{2}, g_{3}\right]+b\left[g_{1}, g_{4}, g_{5}\right]$. There is no loss of generality in writing $\Phi_{1}=\sum_{j<k} c_{j k}\left[g_{j}, g_{k}\right]$.

We first consider the case in which both $a, b \neq 0$. Then a simple computation shows that (5) implies

$$
\left|\Phi_{1}\right\rangle=c_{24}\left[g_{2}, g_{4}\right]+c_{25}\left[g_{2}, g_{5}\right]+c_{34}\left[g_{3}, g_{4}\right]+c_{35}\left[g_{3}, g_{5}\right]
$$

so that $\left\langle g_{1}, \Phi_{1}\right\rangle_{1}=0$. Defining $\left|\phi_{6}\right\rangle=\left|g_{1}\right\rangle$, gives $\lambda_{6}=1-\lambda_{1}$ and one can rewrite (4) as

$$
\begin{equation*}
\gamma=\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\left(1-\lambda_{1}\right)\left|\phi_{6}\right\rangle\left\langle\phi_{6}\right|+\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \widetilde{\gamma}_{2} \tag{7}
\end{equation*}
$$

where $\tilde{\gamma}_{2}=\gamma_{2}-\left|g_{1}\right\rangle\left\langle g_{1}\right|$ is the reduced density matrix of $\left|G_{1}\right\rangle=\left\langle g_{1}, \Phi_{2}\right\rangle_{3}=a\left[g_{2}, g_{3}\right]+$ $b\left[g_{4}, g_{5}\right]$. Thus, in the orthonormal basis $\left\{g_{2}, g_{3}, g_{4}, g_{5}\right\}$ we find

$$
\gamma_{1}=\left(\begin{array}{cccc}
\left|c_{24}\right|^{2}+\left|c_{25}\right|^{2} & \bar{c}_{24} c_{34}+\bar{c}_{25} c_{35} & 0 & 0 \\
c_{24} \bar{c}_{34}+c_{25} \bar{c}_{35} & \left|c_{34}\right|^{2}+\left|c_{35}\right|^{2} & 0 & 0 \\
0 & 0 & \left|c_{24}\right|^{2}+\left|c_{34}\right|^{2} & \bar{c}_{24} c_{25}+\bar{c}_{34} c_{35} \\
0 & 0 & c_{24} \bar{c}_{25}+c_{34} \bar{c}_{35} & \left|c_{25}\right|^{2}+\left|c_{35}\right|^{2}
\end{array}\right)
$$

The key point is that γ_{1} is block diagonal and can be diagonalized by a block diagonal unitary transformation which mixes only within pairs g_{2}, g_{3} and g_{4}, g_{5} leaving the Slater determinants in G_{1} unaffected (except possibly for a phase factor which can be absorbed into the new basis). Denoting the new basis as ϕ_{k}, we now have $\left|G_{1}\right\rangle=a\left[\phi_{2}, \phi_{3}\right]+b\left[\phi_{4}, \phi_{5}\right]$. Then either by explicit computation or from Coleman's proof [4] of theorem 2, one can write $\left|\Phi_{1}\right\rangle=s\left[\phi_{2}, \phi_{4}\right]+t\left[\phi_{3}, \phi_{5}\right]$ with $|s|^{2}+|t|^{2}=1$. Thus, the eigenvalues of γ satisfy

$$
\begin{align*}
& \lambda_{2}=\lambda_{1}|a|^{2}+\left(1-\lambda_{1}\right)|s|^{2} \tag{8a}\\
& \lambda_{3}=\lambda_{1}|b|^{2}+\left(1-\lambda_{1}\right)|s|^{2} \tag{8b}\\
& \lambda_{4}=\lambda_{1}|a|^{2}+\left(1-\lambda_{1}\right)|t|^{2} \tag{8c}\\
& \lambda_{5}=\lambda_{1}|b|^{2}+\left(1-\lambda_{1}\right)|t|^{2} \tag{8d}
\end{align*}
$$

which implies

$$
\begin{equation*}
\lambda_{2}+\lambda_{5}=\lambda_{3}+\lambda_{4}=\lambda_{1}+\left(1-\lambda_{1}\right)=1 . \tag{9}
\end{equation*}
$$

We now consider the possibility that one of a, b is zero, in which case $\left|\Phi_{2}\right\rangle$ is a single Slater determinant and there is no loss of generality in writing $\Phi_{2}=\left[g_{1}, g_{2}, g_{3}\right]$. Then, (5) implies that one can write

$$
\begin{equation*}
\left|\Phi_{1}\right\rangle=\sum_{j=1,2,3} \sum_{k=4,5} x_{j k}\left[g_{j}, g_{k}\right]+c\left[g_{4}, g_{5}\right] . \tag{10}
\end{equation*}
$$

Now regard $x_{j k}$ as a 3×2 matrix and observe when U, V are 3×3 and 2×2 unitary matrices, $Y=U X V^{\dagger}$ corresponds to a basis change which mixes g_{1}, g_{2}, g_{3} and g_{4}, g_{5} among themselves. By the singular value decomposition we can find U, V such that only y_{24} and y_{35} are non-zero. Thus, in the new basis which we call ϕ_{k}

$$
\begin{equation*}
\left|\Phi_{1}\right\rangle=y_{24}\left[\phi_{2}, \phi_{4}\right]+y_{35}\left[\phi_{3}, \phi_{5}\right]+c\left[\phi_{4}, \phi_{5}\right] . \tag{11}
\end{equation*}
$$

Again writing $\phi_{6}=g_{1}$, we find that the pre-image of γ has the form
$|\Psi\rangle=a_{123}\left[\phi_{1}, \phi_{2}, \phi_{3}\right]+a_{246}\left[\phi_{2}, \phi_{4}, \phi_{6}\right]+a_{356}\left[\phi_{3}, \phi_{5}, \phi_{6}\right]+a_{456}\left[\phi_{4}, \phi_{5}, \phi_{6}\right]$
which implies (1).

4. Necessity of the inequality (2)

We now prove that the inequality (2) is necessary for N-representability. When γ has the form (3) and (1) holds, its pre-image can be written in the form

$$
\begin{align*}
|\Psi\rangle= & x_{000}\left[\phi_{1},\right. \\
, & \left.\phi_{2}, \phi_{3}\right]+x_{001}\left[\phi_{1}, \phi_{2}, \phi_{4}\right]+x_{010}\left[\phi_{1}, \phi_{5}, \phi_{3}\right]+x_{011}\left[\phi_{1}, \phi_{5}, \phi_{4}\right] \tag{13}\\
& +x_{100}\left[\phi_{6}, \phi_{2}, \phi_{3}\right]+x_{101}\left[\phi_{6}, \phi_{2}, \phi_{4}\right]+x_{110}\left[\phi_{6}, \phi_{5}, \phi_{3}\right]+x_{111}\left[\phi_{6}, \phi_{5}, \phi_{4}\right] .
\end{align*}
$$

In this form, there is no loss of generality in assuming that λ_{k} are arranged in non-increasing order. If we now define

$$
S=\left(\begin{array}{ll}
x_{000} & x_{001} \tag{14}\\
x_{010} & x_{011}
\end{array}\right) \quad T=\left(\begin{array}{ll}
x_{100} & x_{101} \\
x_{110} & x_{111}
\end{array}\right)
$$

then the reduced density matrix of $|\Psi\rangle$ is (up to a permutation) $W_{1} \oplus W_{2} \oplus W_{3}$ with

$$
\begin{align*}
& W_{1}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{6}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{tr} S S^{\dagger} & \operatorname{tr} S T^{\dagger} \\
\operatorname{tr} T S^{\dagger} & \operatorname{tr} T T^{\dagger}
\end{array}\right) \tag{15}\\
& W_{2}=\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{5}
\end{array}\right)=S S^{\dagger}+T T^{\dagger} \tag{16}\\
& W_{3}=\left(\begin{array}{cc}
\lambda_{3} & 0 \\
0 & \lambda_{4}
\end{array}\right)=S^{\dagger} S+T^{\dagger} T \tag{17}
\end{align*}
$$

It follows from (15) that the eigenvalues of $S S^{\dagger}$, which are the same as those of $S^{\dagger} S$, can be written as $\sigma, \lambda_{1}-\sigma$ with $0 \leqslant \sigma \leqslant \lambda_{1}$; similarly those of $T T^{\dagger}$ and $T^{\dagger} T$ can be written as $\tau, \lambda_{6}-\tau$ with $0 \leqslant \tau \leqslant \lambda_{6}$.

The form of (16) and (17) is suggestive of Weyl's problem with $A=S S^{\dagger}, B=T T^{\dagger}, C=$ W_{2} in the case of (16) and adjoints reversed for (17). Weyl $[6,11]$ used the max-min principle to find necessary conditions

$$
\begin{equation*}
a_{1}+b_{1} \geqslant c_{1}, \quad a_{2}+b_{1} \geqslant c_{2}, \quad a_{1}+b_{2} \geqslant c_{2} \tag{18}
\end{equation*}
$$

(with all three sequences in non-increasing order). For 2×2 matrices satisfying $\operatorname{tr} A+\operatorname{tr} B=$ $\operatorname{tr} C$, these are also sufficient. We apply Weyl's inequalities to (16) and (17) and retain the stronger in each pair to obtain

$$
\begin{align*}
& \sigma+\tau \geqslant \lambda_{2} \tag{19a}\\
& \lambda_{1}-\sigma+\tau \geqslant \lambda_{4} \tag{19b}\\
& \sigma+\lambda_{6}-\tau \geqslant \lambda_{4} \tag{19c}
\end{align*}
$$

Adding together the first two inequalities implies

$$
\begin{equation*}
2 \tau \geqslant \lambda_{2}+\lambda_{4}-\lambda_{1} . \tag{20}
\end{equation*}
$$

Combining this with $2 \lambda_{6} \geqslant 2 \tau$ and using (1) gives

$$
\begin{equation*}
2\left(1-\lambda_{1}\right)=2 \lambda_{6} \geqslant \lambda_{2}+1-\lambda_{3}-\lambda_{1} \tag{21}
\end{equation*}
$$

which is equivalent to (2).

5. Sufficiency

To prove sufficiency, it suffices to consider a pre-image of the form

$$
\begin{equation*}
\Psi=\hat{a}\left[\phi_{1}, \phi_{2}, \phi_{3}\right]+\hat{b}\left[\phi_{1}, \phi_{4}, \phi_{5}\right]+\hat{s}\left[\phi_{6}, \phi_{2}, \phi_{4}\right]+\hat{t}\left[\phi_{6}, \phi_{5}, \phi_{3}\right] \tag{22}
\end{equation*}
$$

and observe that its first-order reduced density matrix is diagonal in the basis ϕ_{k} with

$$
|\hat{a}|^{2}+|\hat{b}|^{2}=\lambda_{1} \quad|\hat{s}|^{2}+|\hat{t}|^{2}=\lambda_{6}
$$

Under the assumption that (1) holds, the linear relation between the eigenvalues of γ and $|\hat{a}|^{2},|\hat{b}|^{2},|\hat{s}|^{2},|\hat{t}|^{2}$ can be inverted to yield

$$
\begin{array}{ll}
|\hat{a}|^{2}=\frac{1}{2}\left(\lambda_{2}+\lambda_{3}-\lambda_{6}\right) & |\hat{b}|^{2}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}+\lambda_{4}\right) \\
|\hat{s}|^{2}=\frac{1}{2}\left(\lambda_{2}-\lambda_{3}+\lambda_{6}\right) & |\hat{t}|^{2}=\frac{1}{2}\left(\lambda_{6}-\lambda_{2}+\lambda_{3}\right) \tag{23b}
\end{array}
$$

With the ordering convention $\lambda_{k} \geqslant \lambda_{k+1}$, the expressions for $|\hat{a}|^{2},|\hat{b}|^{2}$ and $|\hat{s}|^{2}$ are all positive; and $|\hat{t}|^{2} \geqslant 0$ is equivalent to (2).

In section 3, we showed slightly more than that (1) holds. We also showed that the pre-image can always be written in a form in which only four of the coefficients in (13) are non-zero. However, neither of these forms is equivalent to (22) with λ_{k} decreasing. The equations for the coefficients in one of those forms might have solutions only when a stronger inequality than (2) holds. In particular, the form obtained from (7) in the paragraph before (8) has solutions only when $\lambda_{1}+\lambda_{2} \leqslant \lambda_{4}+1$.

6. General $R=N+3$ with N odd

It is tempting to try to extend the argument in section 3 to the general case of $R=N+3$ when N is odd. Using (4) we can conclude as before that γ_{2} must be N-representable with $R=N+2$ and thus has an eigenvector $\left|g_{1}\right\rangle$ with eigenvalue 1 . We can write its pre-image as

$$
\begin{gather*}
\left|\Phi_{2}\right\rangle=a_{m}\left[g_{1}, g_{2}, g_{3}, \ldots, g_{N-1}, g_{N}\right]+\cdots+a_{k}\left[g_{1}, g_{2}, g_{3}, \ldots, g_{2 k-1} g_{2 k+2}, \ldots, g_{N-1}, g_{N}\right] \\
+\cdots+a_{1}\left[g_{1}, g_{4}, g_{4}, \ldots, g_{N+1}, g_{N+2}\right] \tag{24}
\end{gather*}
$$

where $m=\frac{1}{2}(N+1)$ and a_{k} is the coefficient of the Slater determinant which does not contain $g_{2 k}$ or $g_{2 k+1}$. However, it is not evident that the strong orthogonality condition $\left\langle g_{1}, \Phi_{1}\right\rangle_{1}=0$ holds as was the case for $N=3$. If we knew that

$$
\begin{equation*}
\lambda_{1}+\left\langle g_{1}, \gamma g_{1}\right\rangle \leqslant 1 \tag{25}
\end{equation*}
$$

strong orthogonality would follow, and we could again conclude that g_{1} is an eigenvector of γ with eigenvalue $\left\langle g_{1}, \gamma g_{1}\right\rangle=1-\lambda_{1}$. However, we can only show that the assumption of strong orthogonality implies (25) with equality.

Proposition 4. Let $R=N+3$ with N odd and consider the decomposition (4) of a one-particle density matrix γ under the assumption that λ_{1} is the largest eigenvalue. Then $\left|\Phi_{2}\right\rangle$ has an eigenvector $\left|g_{1}\right\rangle$ with eigenvalue 1. If $\left\langle g_{1}, \Phi_{1}\right\rangle_{1}=0$, then $\left|g_{1}\right\rangle$ is an eigenvector of γ with eigenvalue $1-\lambda_{1}$ and this is the smallest eigenvalue of γ.

Proof. Let $\left|\phi_{k}\right\rangle$ denote an eigenvector of γ orthogonal to both $\left|\phi_{1}\right\rangle$ and $\left|g_{1}\right\rangle$ and write

$$
\begin{aligned}
& \left|\Phi_{1}\right\rangle=a \mathcal{A}\left|\phi_{k} \otimes \chi_{1}\right\rangle+\sqrt{1-a^{2}}\left|\psi_{1}\right\rangle \\
& \left|\Phi_{2}\right\rangle=b \mathcal{A}\left|g_{1} \otimes \phi_{k} \otimes \chi_{2}\right\rangle+\sqrt{1-b^{2}} \mathcal{A}\left|g_{1} \otimes \psi_{2}\right\rangle
\end{aligned}
$$

where we have absorbed any phases into ψ_{j}. Then $\lambda_{k}=\lambda_{1} a^{2}+\left(1-\lambda_{1}\right) b^{2}$. Since each $\left|\psi_{j}\right\rangle$ is strongly orthogonal to $\left|\phi_{1}\right\rangle,\left|g_{1}\right\rangle$ and $\left|\phi_{k}\right\rangle$, each $\left|\psi_{j}\right\rangle$ is an ($N-1$)-particle function with one rank at most N. It is well known $[3,5,10]$ that this implies that $\left|\psi_{j}\right\rangle$ is a single Slater determinant. Since both $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ have one-particle density matrices in the same N -dimensional subspace, it follows that the ranges of these one-particle density matrices have a non-zero intersection. Let $|f\rangle$ be in this intersection. Then

$$
\begin{equation*}
\langle f, \gamma f\rangle=\left(1-a^{2}\right) \lambda_{1}+\left(1-b^{2}\right)\left(1-\lambda_{1}\right)=1-\lambda_{k} . \tag{26}
\end{equation*}
$$

Thus, if $\lambda_{k}<1-\lambda_{1}$, then $\langle f, \gamma f\rangle>\lambda_{1}$ contradicting the assumption that λ_{1} is the largest eigenvalue.

If the strong orthogonality assumption does not hold then (4) and (24) imply that $\lambda_{1}+\left\langle g_{1}, \gamma g_{1}\right\rangle \geqslant 1$ which is the reverse of (25) and implies that $\lambda_{1}+\lambda_{k} \geqslant 1$, for some $k \neq 1$. Altunbulak and Klyachko [1] have proved the stronger result that

$$
\begin{equation*}
\lambda_{1}+\lambda_{R} \geqslant 1 \tag{27}
\end{equation*}
$$

in this situation. Actually, they proved an equivalent dual condition, i.e., when $N=3$ and R is even $\lambda_{1}+\lambda_{R} \leqslant 1$. A condition of the form $\lambda_{j}+\lambda_{j^{\prime}} \leqslant 1$ is sometimes called a 'strong Pauli condition'; for $N=3$ and R even Altunbulak and Klyachko have shown the strong Pauli condition $\lambda_{1+k}+\lambda_{r-k} \leqslant 1$; combining this with the fact that particle-hole duality yields the reverse inequality, gives another proof of the necessity of (1) in the case $N=3, R=6$. The following conjecture would imply that both the strong Pauli condition and (27) hold. Although that might be too much too expect, it would be interesting to know under what circumstances it is valid.

Conjecture 5. When N is odd and $R=N+3$, a necessary condition for pure state N representability of a one-particle density matrix is $\lambda_{1}+\lambda_{R}=1$, where we have assumed that the eigenvalues are in non-increasing order.

7. Further connections with Weyl's problem

Now assume that g_{1} is strongly orthogonal to Φ_{1} and, as in (7), write

$$
\begin{equation*}
\gamma=\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\left(1-\lambda_{1}\right)\left|g_{1}\right\rangle\left\langle g_{1}\right|+\lambda_{1} \gamma_{1}+\left(1-\lambda_{1}\right) \tilde{\gamma}_{2} . \tag{28}
\end{equation*}
$$

The N-representability problem in this situation is reduced to finding conditions which ensure that a density matrix is a convex combination of two ($N-1$)-representable density matrices of rank $N+1$ which satisfy an additional orthogonality constraint. Write

$$
\begin{aligned}
& \left|\Phi_{1}\right\rangle=\sum_{k_{1}<k_{2}<\cdots k_{N-1}} x_{k_{1} k_{2} \ldots k_{N-1}}\left[g_{1}, g_{2}, \ldots, g_{N-1}\right] \\
& \left|\Phi_{2}\right\rangle=\sum_{k_{1}<k_{2}<\cdots k_{N-1}} y_{k_{1} k_{2} \ldots k_{N-1}} \cdot\left[g_{1}, g_{2}, \ldots, g_{N-1}\right] .
\end{aligned}
$$

Let X, Y be the corresponding anti-symmetric tensors, and let

$$
\begin{equation*}
X Y^{\dagger}=\sum_{k_{2}, k_{3}, \ldots, k_{M}} x_{k_{1}, k_{2}, \ldots, k_{M}} \bar{y}_{k_{1}, k_{2}, \ldots, k_{M}} \tag{29}
\end{equation*}
$$

denote contraction over $k_{2} \ldots k_{M}$. Then, we can rewrite (7) as

$$
\begin{equation*}
\gamma-\lambda_{1}\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|-\left(1-\lambda_{1}\right)\left|g_{1}\right\rangle\left\langle g_{1}\right|=X X^{\dagger}+Y Y^{\dagger} \tag{30}
\end{equation*}
$$

with the constraint $\left\langle\Phi_{1}, \Phi_{2}\right\rangle=\operatorname{tr} X Y^{\dagger}=0$. This is a constrained version of Weyl's problem. If the $R=N+3$ problem could be solved in this way, then by particle-hole duality, we would
also have the solution to the 3-representability problem. Although we do not know if strongly orthogonality of g_{1} to Φ_{1} holds in general, this viewpoint provides a connection to Weyl's problem that is more general than the situation for which it was used in section 4.

For general R (or for $R=N+3$ without the simplification that leads to (7)), Coleman's lemma 1 gives a constrained version of Weyl's problem with $\gamma_{1}=X X^{\dagger}$ and $\gamma_{2}=Y Y^{\dagger}$. But now γ_{1} is $(N-1)$-representable and γ_{2} is N-representable and the orthogonality condition (5) must be translated to tensors of different sizes. Nevertheless, it now seems clear that what Coleman referred to as a double induction lemma was a constrained version of Weyl's problem. The solution to Weyl's problem was given less than 10 years ago, with more recent refinements [9]. Thus, it is not surprising that the pure state N-representability problem also resisted solution and that Klyachko succeeded by using powerful techniques associated with Schubert calculus to solve both problems.

Acknowledgments

It is a pleasure to recall that most of this work was the result of discussions with R E Borland and K Dennis during a visit to the National Physical Laboratory in Great Britain in the fall of 1970.

References

[1] Altunbulak M and Klyachko A private communication
[2] Borland R E and Dennis K 1972 The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six J. Phys. B: At. Mol. Phys. 57-15
[3] Coleman A J 1963 The structure of fermion density matrices Rev. Mod. Phys. 35 668-87
[4] Coleman A J 1962 The structure of fermion density matrices Uppsala Report No 80 (June)
[5] Foldy L L 1962 Antisymmetric functions and Slater determinants J. Math. Phys. 3 531-8
[6] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press)
[7] Klyachko A 1998 Stable bundles, representation theory and Hermitian operators Sel. Math. 4419-45
[8] Klyachko A 2006 Quantum marginal problem and N-representability J. Phys.: Conf. Ser. 36 72-86 (Preprint quant-ph/0511102)
[9] Knutson A and Tao T 2001 Honeycombs and sums of Hermitian matrices Not. Am. Math. Soc. 48 175-86
[10] Ruskai M B 1970 N-representability problem: particle-hole equivalence J. Math. Phys. 11 3218-24
[11] Weyl H 1912 Das asymptotische verteilungsgesetzder eigenwerte linearer linearer parteiller differentialgleichungen Math. Ann. 71 441-79

